US009110793B2

a2 United States Patent

(10) Patent No.: US 9,110,793 B2

Cabrera et al. 45) Date of Patent: Aug. 18, 2015
(54) INNER PROCESS (56) References Cited
(75) Inventors: Marco Escandell Cabrera, Bellvue, WA U.S. PATENT DOCUMENTS
(US); Elizabeth Murray
5,897,658 A 4/1999 Eskesen et al.
: . : : : 6,535,929 B1* 3/2003 Provinoetal. ................ 719/321
(73)  Assignee: g‘(f:;';:;‘t‘i;‘zlzzgﬁsygggges 2003/0093579 Al 5/2003 Zimmer et al.
’ ’ 2009/0282474 Al* 112009 Chenetal. .....ccceeevneeee. 726/21
2011/0078361 A1*  3/2011 Chenetal. cocoovcirrrrrirnes 711/6
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 1090 days.
Primary Examiner — Cheng-Yuan Tseng
(21) Appl. No.: 12/611,712 Assistant Examiner — Craig Goldschmidt
(74) Attorney, Agent, or Firm — D’Ambrosio & Menon,
(22) Filed: Novw. 3, 2009 PLLC; Usha Menon
(Under 37 CFR 1.47)
57 ABSTRACT
(65) Prior Publication Data .
Methods, systems, and products for computer processing. In
US 2011/0107339 Al May 5, 2011 one general embodiment, the method comprises running an
inner process in the context of an executing thread wherein
(51) Int.CL the thread has an original address space in memory and hiding
GOGF 9/00 (2006.01) at least a portion of the memory from the inner process. The
GO6F 12/02 (2006.01) inner process may run on the same credentials as the thread.
GOGF 9/48 (2006.01) Running the inner process may include creating a new
GO6F 9/54 (2006.01) address space for the inner process in the memory and assign-
GO6k 21/79 (2013.01) ing the new address space to the thread, so that the inner
GO6F 12/10 (2006.01) process comprises its own address space. The inner process
(52) US.CL may he allowed to access only the new address space. The
CPC ... GOG6F 12/0284 (2013.01); GOGF 9/4843 kernel may maintain the thread’s original address space along
(2013.01); GO6F 9/545 (2013.01); GOGF with the new address space, so that multiple address spaces
12/109 (2013.01); GO6F 21/79 (2013.01) exist for a particular thread. The kernel may pass selected data
(58) Field of Classification Search from the thread to the inner process.

None

See application file for complete search history.

18 Claims, 4 Drawing Sheets

Memory
320

Code
Section
322

Data Section
324

Stack
326

Original
4 Address

Selected Space
»/ Data 330
/

Run Inner Process in
Context of Executing
Thread Create New
302 Address Space
308
Assign New Address
Space to Thread
308
Pass Selected Data from
Thread to Inner Process
Hide Portion of
Memory from y
g"orfr Process | ajlow Inner Process to Access
= Only New Address Space
314

End

New
Address
Space
340




U.S. Patent

Aug. 18, 2015

User Mode 102
Thread 104
~ Inner Process Call Instance 106
Data A 108 DataB 110
Data A
Argument A
112
— System Call Interface 114 —
Y
Create Inner
Inner Process
Process 118
Call
116
Kernel Mode 120
FIG. 1A

Sheet 1 of 4 US 9,110,793 B2

User Mode 102

Thread 104

Data A 108 DataB 110

Inner Process 130
Data A 108

— System Call Interface 114 —

Kernel Mode 120

FIG. 1B



U.S. Patent Aug. 18, 2015 Sheet 2 of 4 US 9,110,793 B2
Computer 202
RAM 204
Inner Process Module
206
Operating System
Non-Volatile 208
Memory
250
240—
Communications Processor Input/Ouput
Adapter 254 Interface
252 = 256

I

!

FAN
Y N

Other
Devices

260

Input Device
270

Ouput
Device
272

FIG. 2




U.S. Patent Aug. 18, 2015 Sheet 3 of 4 US 9,110,793 B2

Start Memory
320
Run Inner Process in J Code
Context of Executing Section
Thread Create New 322
302 Address Space
T 306 .
- Data Section
l 324
Assign New Address Stack
Space to Thread 326
308
l QOriginal
Address
Pass Selected Data from Selected Space
Thread to Inner Process Data 330
310 312
New
Hide Portion of Address
Memory from y > Space
gnonfr Process Allow Inner Process to Access 340
= Only New Address Space
314

FIG. 3



US 9,110,793 B2

Sheet 4 of 4

Aug. 18, 2015

U.S. Patent

1%
i

7%

7 e

w\\\\\

%\\\§g
i

¥ 'Old

9ly
HoeIg

(257
desH payodxa-uoN

[457%
desy papodx3

0y
X8 ]

7
\\\\\w\w&

0174
aoedg
SS8IppY
pealy]

0ge
abelog

80k
eleq] pauodxa-uoN

Eleq BNy

oy

80edg

ssalppy
pesiyL

90r
gieq] papodx3

[0
[auiay

0y
IX3JUOY) UONNIIXT




US 9,110,793 B2

1
INNER PROCESS

BACKGROUND

Computer functionality is achieved through processes. A
process is a program in execution including several compo-
nents in memory, such as program code, data, and a process
stack for holding temporary data (subroutine parameters,
return addresses, temporary variables, etc). The process
includes an address space in memory (i.e., process memory)
which contains these components.

Processes need to consume or expose functionality in order
to produce output. Often, functionality is provided by a third
party as a shared object, or library. These shared objects may
be loaded into a process at runtime. When loaded into
memory, these processes have access to the complete process
memory.

SUMMARY

Methods, systems, and products for computer processing
are disclosed herein. Embodiments of the present disclosure
may be initiated through a kernel interface. In one general
embodiment, the method comprises running an inner process
in the context of an executing thread wherein the thread has an
original address space in memory and hiding at least a portion
of'the memory from the inner process. The inner process may
run on the same credentials as the thread. Running the inner
process may include creating a new address space for the
inner process in the memory and assigning the new address
space to the thread, so that the inner process comprises its on
address space. The inner process may be allowed to access
only the new address space. The kernel may maintain the
thread’s original address space along with the new address
space, so that multiple address spaces exist for a particular
thread. The kernel may pass selected data from the thread to
the inner process. The new address space may comprise a
heap and a stack. Passing data selected by a user from the
thread to the inner process may be carried out by exporting
pointers corresponding to the selected data to the data section
of the new address space. Another general embodiment
includes a computer program product disposed on a com-
puter-readable medium for computer processing, the com-
puter program product comprising computer program
instructions for running an inner process in the context of an
executing thread and computer program instructions for hid-
ing at least a portion of the memory from the inner process.
Another general embodiment includes a data processing sys-
tem for computer processing. The system includes a proces-
sor; and a computer memory operatively coupled to the pro-
cessor. The computer memory has disposed within it
computer program instructions for running an inner process
in the context of an executing thread wherein the thread has an
original address space in memory and computer program
instructions for hiding at least a portion of the memory from
the inner process.

The foregoing and other objects, features and advantages
of the disclosure will be apparent from the following more
particular descriptions of exemplary embodiments of the
invention as illustrated in the accompanying drawings
wherein like reference numbers generally represent like parts
of exemplary embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B set forth a data flow diagram illustrating
the invocation of an inner process through a system call
interface according to embodiments of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 sets forth ablock diagram of an exemplary computer
in accordance with one embodiment of the invention.

FIG. 3 is a data flow diagram illustrating a method for
computer processing in accordance with one embodiment of
the invention.

FIG. 4 is a data flow diagram illustrating address spaces for
athread and an inner process in accordance with one embodi-
ment of the invention.

DETAILED DESCRIPTION

Exemplary methods, systems, and computer products for
computer processing are described with reference to the
accompanying drawings. The terminology used herein is for
the purpose of describing particular embodiments only and is
not intended to be limiting of the invention. As used herein,
the singular forms “a”, “an”, and “the” are intended to include
the plural forms as well, unless the context clearly indicates
otherwise. It will be further understood that the terms “com-
prises” and/or “comprising,” when used in this specification,
specify the presence of stated features, integers, steps, opera-
tions, elements, and/or components, but do not preclude the
presence or addition of one or more other features, integers,
steps, operations, elements, components, and/or groups
thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material or act for
performing the function in combination with other claimed
elements as specifically claimed. The description of the
present invention has been presented for purposes of illustra-
tion and description, but is not intended to be exhaustive or
limited to the invention in the form disclosed. Many modifi-
cations and variations will be apparent to those of ordinary
skill in the art. The embodiment was chosen and described in
order to best explain the principles of the invention and the
practical application, and to enable others of ordinary skill in
the art to understand the invention for various embodiments
with various modifications as are suited to the particular use
contemplated.

Generally, embodiments of the present invention relate to
aninner process running in the context of an executing thread.
The inner process includes its own address space, which is
assigned to the thread. Thus, a thread may have multiple
process address spaces. The thread may be the only thread for
a given task (for example, as in the case of a heavyweight
process) or may be one of many threads existing for a task
(i.e., a lightweight process). Although the thread has access to
process memory, the inner process has access only to its own
address space, so that the process memory as a whole is
hidden from the inner process. Third-party extensions (such
as shared objects) dynamically loaded into the inner process
are therefore denied access to the process memory as a whole.
A portion of the process memory may be exported from the
thread to the inner process, such as by copying selected data
or pointers representing data to the new address space, so that
only data selected (by a developer, for example) is exposed to
the third-party extension. Overhead and complexity associ-
ated with inter-process communication is avoided, and the
inner process may run on the same credentials as the thread.
The inner process may also be used to perform imperson-
ation, or executing part of the code under different creden-
tials, by including a credential change in an invocation of the
inner process. For example, embodiments of the present dis-
closure may be initiated through a kernel interface. The code



US 9,110,793 B2

3

section (text) invoking the inner process may include argu-
ments or options for credential change which are supported
by the operating system.

FIGS. 1A and 1B set forth a data flow diagram illustrating
the invocation of an inner process through a system call
interface according to embodiments of the present invention.
Referring to FIG. 1A (before the inner process is created),
thread 104 has access to Data A 108 and Data B 110. Thread
104, executing in a user mode 102, may invoke an instance of
the inner process 106 in the code section. The invocation may
include arguments indicating the data from thread 104 to be
passed to the inner process, such as the Data A argument 112.
The instance of the inner process 106, when invoked by
thread 104, may request an implementation of the inner pro-
cess call 116 in kernel mode 120 through a system call inter-
face 114 or other kernel interface. The system call interface
114 provides a software interface to services provided by the
operating system and defines all the services of the operating
system to threads running in user mode 102, such as thread
104. The system call interface 114 may include a system call
table that has pointers to the functions that implement the
system calls inside the kernel, which may be a microkernel.
The system call table provides a well-defined interface to the
operating system services. When implemented, the inner pro-
cess call 116 creates inner process 118. Referring to FIG. 1B,
the kernel has created the inner process 130 assigned the inner
process to thread 104. Inner process has access only to Data A
108, which is passed to it by the kernel. Inner process 130
returns to the thread 104, which created it. Although FIGS.
1A and 1B show inner process 130 running in user mode 102,
in some embodiments inner process 130 may execute in ker-
nel mode 120.

Embodiments of the presently disclosed invention are
implemented to some extent as software modules installed
and running on one or more data processing systems (‘com-
puters’), such as servers, workstations, tablet computers, PCs,
personal digital assistants (‘PDAs’), smart phones, and so on.
FIG. 2 sets forth a block diagram of an exemplary computer
202. Computer 202 includes at least one computer processor
254 as well as a computer memory, including both volatile
random access memory (‘RAM’) 204 and some form or
forms of non-volatile computer memory 250 such as a hard
disk drive, an optical disk drive, or an electrically erasable
programmable read-only memory space (also known as
‘EEPROM’ or ‘Flash’ memory). The computer memory may
be connected through a system bus 240 to the processor 254
and to other system components. Thus, the software modules
may be program instructions stored in computer memory.

An operating system 208 is stored in computer memory.
Operating system 208 may be any appropriate operating sys-
tem such as Windows XP, Windows Vista, Mac OS X, UNIX,
LINUX, or AIX from International Business Machines Cor-
poration (Armonk, N.Y.).

Computing device 202 may also include one or more input/
output interface adapters 256. Input/output interface adapters
256 may implement user-oriented input/output through soft-
ware drivers and computer hardware for controlling output to
output devices 272 such as computer display screens, as well
as user input from input devices 270, such as keyboards and
mice.

Computing device 202 may also include a communications
adapter 252 for implementing data communications with
other devices 260. Communications adapter 252 implements
the hardware level of data communications through which
one computer sends data communications to another com-
puter through a network.

10

15

20

25

30

35

40

45

50

55

60

65

4

Also stored in computer memory is an inner process mod-
ule 206, which may operate at least partially in kernel mode.
The inner process module 206 includes computer program
instructions for enabling an inner process as described herein.
The module may include computer program instructions for
creating a new address space for the inner process in the
memory of the computer and assigning the new address space
to the thread. The module includes computer program
instructions for running an inner process in the context of an
executing thread within the new address space. The computer
program instructions may allow the inner process to access
only the new address space so that the memory available to
the thread is hidden from the inner process. The computer
program instructions may provide for exporting a copy of
selected data to the new address space for use by the inner
process.

Inner process module 206 may be implemented as one or
more sub-modules operating in separate software layers or in
the same layer. Although depicted as being incorporated into
the operating system 208 in FIG. 2, the inner process module
206 or one or more sub-modules making up the inner process
module may be separate from the operating system. In par-
ticular, invocations of the inner process may be implemented
in high-level code, such as application code. In some embodi-
ments, the performance determination module 206 may be
implemented in the software stack, in hardware, in firmware
(such as in the BIOS), or in any other manner as will occur to
those of ordinary skill in the art.

FIG. 3 is a data flow diagram illustrating a method for
computer processing in accordance with one embodiment of
the invention. The method of FIG. 3 includes running an inner
process in the context of an executing thread (block 302). The
method also includes hiding at least a portion of the memory
320 from the inner process (block 304).

The thread has an original address space 330 in memory
320. For example the original address space 330 may include
a code section 322, a data section 324, and a stack 326. The
thread may share the code section 322 and data section 324
with other threads in the same task. In one implementation,
the code section 322 includes instances of one or more invo-
cations of an inner process system call. During normal execu-
tion of the code in a thread, the system call is invoked. When
invoked, the executing thread requests an implementation of
the inner process system call in kernel mode through a system
call interface.

Running an inner process in the context of an executing
thread (block 302) may include creating a new address space
340 for the inner process in the memory 320 (block 306) and
assigning the new address space 340 to the thread (block 308).
Running an inner process in the context of an executing thread
(block 302) may also include passing selected data 312 from
the thread to the inner process (block 310). Passing the
selected data 312 from the thread to the inner process (block
310) may be carried out by obtaining a pointer to the starting
address of the data section and retrieving data until the end of
the data file is reached. Selected data is copied to the data
section of the new address space. The copy of the selected
data may be a deep copy (a copy of the actual data), a shallow
copy (a copy of pointers referencing the data), or a combina-
tion of each type. A new stack and heap may be created in the
new address space (not shown). The new stack may contain
the data passed to the inner process.

Hiding at least a portion of the memory 320 from the inner
process (block 304) may be carried out by allowing the inner
process to access only the new address space 340 (block 314).
The translation look-aside buffer (“TLB’) of the processor
may also be flushed. The TLB is a table in the processor’s



US 9,110,793 B2

5

memory that contains information about the pages in memory
the processor has accessed recently.

FIG. 4 is a data flow diagram illustrating address spaces for
athread and an inner process in accordance with one embodi-
ment of the invention. The thread has an execution context
402, including thread components such as a kernel 404 (e.g.
the process control block), a data section 406, 408, a text
section 410, a heap 412, 414, and a stack 416. The compo-
nents are stored in the thread address space 420, although
only the data section 422, 424 and the heap 426, 428 are
shown. In the currently described embodiment, only portions
of the data section 406, 408 and the heap 412, 414 are
exported to the inner process. These may be the static allo-
cated memory and memory from the heap. The exported data
406 and the non-exported data 408 are shown as two distinct
entities, but may consist of multiple data structures inter-
leaved with one another. The exported and non-exported por-
tions of the heap are similarly described.

Exported data 406 is stored in the address space 422, and
non-exported data 408 is stored in the address space 424.
Exported heap 412 is stored in the address space 426, and
non-exported heap 414 is stored in address space 428.
Address spaces 422-428 contain pointers that reference
address spaces elsewhere in memory (such as in actual data
storage 430) containing the actual information. Thread
address space 420 and actual data storage 440 may be parts of
the same memory structure and are only shown as separate for
illustration. The exported data 406 contained by address
space 422 ofthe thread address space 420 is a pointer pointing
to the actual data stored at address space 432. Similarly, the
pointer for non-exported data 408 is at address space 424 and
points at address space 434, the pointer for exported heap 412
is at 426 and points at address space 436, and the pointer for
non-exported heap 414 is at 428 and points at address 438. In
other implementations, data may be stored without the use of
pointers.

As described above, upon creation of the inner process,
selected data in the data section and the heap are exported to
the inner process. A new address space is created and assigned
to the inner process. Thread address space 440 is identical to
thread address space 420, except for the addition of the new
address space. The new address space includes address
spaces 442 and 446. Pointers pointing to address space 432
and 436 are stored in the new address space at address spaces
442 and 446, respectively.

In some embodiments, only stdin and stdout file descrip-
tors are exposed to the inner process. Alternatively, all or a
subset of the file descriptors may be exposed, either by default
or by listing them as parameters of a call to the kernel inter-
face.

As discussed above with reference to FIG. 1, a thread may
invoke an inner process by executing code comprising an
invocation of an instance of the inner process. Consider the
following exemplary code section for execution in a thread
for illustration:

DATA_TYPE exported_data
unexported_data
main( )

DATA_TYPE
*main_exported_pointer=*DATA_TYPE)malloc(sizeof(DATA_TYPE);
DATA_TYPE *main_unexported
_pointer=*DATA_TYPE)malloc(sizeoff DATA_TYPE);

start innerprocess(functionl, [&exported_data.sizeof(exported_data);
[main_exported_pointer.sizeof(DATA_TYPE)])

20

40

45

50

55

60

6

-continued

function1( )

void *start_of data_pointer=(void*)(address);

DATA_TYPE *exported_data=(DATA_TYPE*)start of data_pointer;
DATA_TYPE

*main_exported_pointer=(DATA_TYPE*)( start_of data_pointer+
sizeof(DATA_TYPE);

dlopen(somelib)

dlsym(somelibfunction);
somelibfunction(exported_data.main_exported_pointer)

The code section above contains a main function where
program execution begins. At some point within the main
program, a functionality provided by a third-party extension
(the library, “somelib”) is needed. Before loading the library,
the code section invokes the inner process using the statement
“start_innerprocess”, and passes as arguments a function con-
taining the code section to be run in the inner process (“func-
tion1”) along with data from the data section required by the
function to operate. Data may be passed as pointers, so that
the data section of the inner process includes pointers that
point to the physical address of the data a user wishes to
expose. The function running within the inner process
includes statements for loading the dynamic library file
(“dlopen(somelib)”) and obtaining the address of a function
within the library (“dlsym(somelibfunction)”). The function
also includes a statement, “somelibfunction(exported_data,
main_exported_pointer)”, for calling the function with the
exported data and pointer as arguments.

It should be understood that the inventive concepts dis-
closed herein are capable of many modifications. To the
extent such modifications fall within the scope of the
appended claims and their equivalents, they are intended to be
covered by this patent.

What is claimed is:

1. A computer-implemented method for facilitating pro-
cessing associated with a computing device, the computing
device comprising at least one processor and at least one
memory communicatively linked to the at least one processor,
one or more processes executing in each of the processors, at
least one thread executing in each process, the method com-
prising:

invoking an instance of an inner process call, comprising:

creating an inner process by requesting an implementa-
tion of the inner process call by an executing thread,
the thread having an original address space;

running the inner process in the context of the thread,

comprising:

creating a new address space for the inner process;

allocating the new address space to the thread, the thread
comprising the original address space and the new
address space; and

exporting a copy of selected data and one or more point-
ers representing the selected data from the original
address space to the new address space for use by the
inner process; and

hiding data stored outside of the new address space from

the inner process.

2. The method of claim 1, further comprising:

storing the exported copy of the selected data in a data

section of the new address space.

3. The method of claim 1 wherein the inner process and the
thread share credentials.



US 9,110,793 B2

7

4. The method of claim 1 wherein the new address space
comprises a heap.

5. The method of claim 1 wherein the new address space
comprises a stack.

6. The method of claim 1 wherein the hiding data stored
outside of the new address space from the inner process
comprises allowing the inner process to directly access only
the new address space.

7. The method of claim 1 further comprising providing the
one or more pointers as an argument to a function called from
within the inner process.

8. The method of claim 1, wherein the invoking an instance
of an inner process call comprises requesting an implemen-
tation of the inner process call through a kernel interface.

9. A non-transitory computer-readable medium for facili-
tating processing associated with a computing device com-
prising at least one processor and at least one memory com-
municatively linked to the at least one processor, one or more
processes executing in each of the processors, at least one
thread executing in each process, the computer-readable
medium comprising computer program instructions execut-
able by the at least one processor, the computer program
instructions comprising:

computer program instructions for invoking an instance of

an inner process call, comprising:

computer program instructions for creating an inner pro-
cess by requesting an implementation of the inner
process call by an executing thread, the thread having
an original address space;

computer program instructions for running the inner pro-

cess in the context of the thread, comprising:

computer program instructions for creating a new
address space for the inner process;

computer program instructions for allocating the new
address space to the thread, the thread comprising the
original address space and the new address space; and

computer program instructions for exporting a copy of
selected data and one or more pointers representing
the selected data from the original address space to the
new address space for use by the inner process; and

computer program instructions for hiding data stored out-

side of the new address space from the inner process.

10. The computer-readable medium of claim 9, the com-
puter program instructions further comprising:

computer program instructions for storing the exported

copy of the selected data in a data section of the new
address space.

11. The computer-readable medium of claim 9, the com-
puter program instructions further comprising computer pro-
gram instructions for providing the one or more pointers as an
argument to a function called from within the inner process.

25

40

45

50

8

12. The computer program product of claim 9, the thread
and the inner process share credentials.

13. The computer program product of claim 9 wherein the
new address space comprises a heap.

14. The computer program product of claim 9 wherein the
new address space comprises a stack.

15. The computer program product of claim 9 wherein the
computer program instructions for hiding the data stored
outside of the new address space from the inner process
comprise computer program instructions for allowing the
inner process to directly access only the new address space.

16. A data processing system for computer processing, the
system comprising:

a processor; and

a memory communicatively linked to the processor, the

memory storing computer program instructions execut-
able by the processor, one or more processes executing
in each of the processors, at least one thread executing in
each process, the computer program instructions com-
prising:

computer program instructions for invoking an instance of

an inner process call, comprising:

computer program instructions for creating an inner pro-
cess by requesting an implementation of the inner
process call by an executing thread, the thread having
an original address space;

computer program instructions for running the inner pro-

cess in the context of the thread, comprising:

computer program instructions for creating a new
address space for the inner process, the thread com-
prising the original address space and the new address
space;

computer program instructions for allocating the new
address space to the thread, the thread comprising the
original address space and the new address space; and

computer program instructions for exporting a copy of
selected data and one or more pointers representing
the selected data from the original address space to the
new address space for use by the inner process; and

computer program instructions for hiding data stored out-

side of the new address space from the inner process.

17. The system of claim 16, the computer program instruc-
tions stored in the memory further comprising:

computer program instructions for storing the exported

data in a data section of the new address space.

18. The system of claim 16, the computer program instruc-
tions stored in the memory further comprising computer pro-
gram instructions for providing the one or more pointers as an
argument to a function called from within the inner process.

#* #* #* #* #*



